

Выявление полиморфизма в гене ВМР-2, ассоциированного с продуктивными признаками у радужной форели

Тыщенко Валентина Ивановна к.б.н., ст. научн. сотр.

Всероссийский научно-исследовательский институт генетики и разведения сельскохозяйственных животных — филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр животноводства — ВИЖ имени академика Л.К. Эрнста» (ВНИИГРЖ)

VII ЕМЕЛЬЯНОВСКИЕ ЧТЕНИЯ, научно-практическая конференция с международным участием «Аграрная наука на современном этапе: состояние, проблемы, перспективы»,

Вологда, 20-21 февраля 2023

Выполнено при поддержке государственного задания 0445-2021-0010

Важным геном радужной форели, который отвечает за формирование мышечной, костной, нервной и др. тканей организма, является ген морфогенетического белка ВМР-2. Таким образом, изучаемый ген является ценным объектом в плане выявления ассоциаций его полиморфных вариантов с продуктивнымии признаками рыбы (длина тела по Смиту, длина чешуйчатого покрова, длина головы, высота тела, масса икры в 5 г, масса 1 икринки, объем эякулята).

Цель исследований: выявить однонуклеотидные полиморфизмы в гене *ВМР-2* и установить их ассоциации с фенотипическими признаками.

Сбор биологического материала от самцов и самок (производители) породы Ропшинская золотая форель проводился на базе Федерального Селекционногенетического центра рыбоводства (пос. Ропша, Ленинградская область). Были отобраны пары производителей, от которых были получены потомки.

Табл.1. Схема пар производителей

№ Самки	№ Самца (Пробирки)	№ Рамки	
283		48	
281	2010	50	
280		5x2	
284		41 - 1-8	
285		101	
286	6	47	
287		40	
288	8 8 8 8	49	
290	10	4x2	
289	120	100	
294	140-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	11	
297	15	60	
293	16	12	
298	17	59	
292	19	53	
295	20 0 20 0	23	

Самки были в возрасте четырех лет, а самцы в возрасте двух лет. Схема сочетаний самок и самцов, от которых получили потомство.

Геномную ДНК выделяли с помощью фенольнодетергентного метода и протеиназы К. Количество и качество ДНК определяли на спектрофотометре NanoDrop 2000.

Используя данные по нуклеотидной последовательности гена *BMP-2* в базе данных NCBI, были подобраны праймеры для амплификации участка экзона 1 и интронов 1 и 2 этого гена.

Дизайн ПЦР праймеров, специфичных для определенных участков генов *ВМР-2*, проводили по онлайн программе Primer 3 Plus (табл. 2 и 3). Последовательности нуклеотидов указанных генов были найдены в литературе и взяты из доступной базы данных GenBank и NCBI.

Амплификацию методом ПЦР на амплификатореThermalCycler T100 (Bio-Rad, США) в следующем режиме:

95°С-4 мин., начальная денатурация,

95°C - 20 сек.,

60°C – 20 сек.,

72°С - 20 сек.

72°C – 4 минуты, финальная элонгация

40 циклов

ПЦР-продукт проверяли на электрофорезе в 2,0% агарозном геле в буфере 0,5xTBE.

Для секвенирования использовали набор реагентов Big Dye Terminator Cycle Sequencing KitTM (Applied Biosystems, CША) с теми же праймерами, с которыми проводилась амплификация.

Секвенирование (определение нуклеотидной последовательности в ДНК) проводится согласно протоколу производителя 8-канального секвенатора Applied Biosystems 3500TM в лаборатории молекулярной генетики ВНИИГРЖ.

Табл. 2. Генотипы восьми пар (самки, самцы) в экзонах и интронах гена *ВМР-2* на 4-й хромосоме у золотой форели

SNP Позици	Позици	Генотипы самок и самцов							
	284-4	286-6	288-8	290-10	291-7`	293-16	294-14	295-20	
BMP- 2_1-EX	A70824 367G	AA-AA	AA-GG	AG-AA	AA-AG	GG-GG	AG-AA	AA-AG	AA-AG
BMP- 2_1-EX	C70824 570T	CC-CT	CC-CT	CT-CT	CT-CC	СТ-СС	CC-CT	CT-CT	CT-CT
BMP- 2_1-IN	A70824 829G	AG-AG	AG-AA	AG-GG	GG-AG	AA-AA	AG-AA	GG-AA	GG-AA
BMP- 2_1-IN	G70824 841T	GG-GT	GT-GT	GG-GT	GG-GT	GG-GT	GT-TT	GT-GT	GT-TT
BMP- 2_2-IN	G70826 709A	AG- GG	AG-AG	AG-GG	AA-AA	GG-AG	AG-GG	AA-AG	AA-GG

Выявлены генотипы в восьми парах производителей. Например, у самки №284 генотип в экзоне гена *ВМР-2* был AA, у самца №4 - то же AA

Табл. 3. Генотипы восьми пар производителей в экзонах гена *BMP*-2 на 24-й хромосоме у золотой форели

	Генотипы самок и самцов гена ВМР-2 на 24 хромосоме							
SNP	284-4	286-6	288-8	290-10	291-7`	293-16	294-14	295-20
EX3_BMP-2_1	AC-AC	CC-AC	CC-AC	CC-AC	CC-AC	CC-CC	AA-AC	AC-AC
EX3_BMP-2_2	CC-CG	GG-CG	CC-GG	CC-CC	CG-CC	CG-GG	GG-CG	GG-CG
EX3_BMP-2_3	AG-AG	GG-GG	GG-AA	GG-AG	AG-AG	AG-AG	AG-GG	AG-AG
EX3_BMP-2_4	AG-AG	GG-GG	GG-AG	AA-GG	GG-AG	GG-GG	AG-GG	GG-AG
EX2_BMP-2_1	TT-CC	CT-CC	CT-CT	CT-CC	CT-CC	CC-CC	CT-CT	CT-CC
EX2_BMP-2_2	AA-AA	AA-AG	AA-AG	AA-AA	AA-AA	AA-AA	AA-AA	AA-AA

Выявлены генотипы в восьми парах производителей на 24-й хромосоме.

Табл. 4. Ассоциации генотипов в гене *BMP-2_*1IN (позиция G70824841T) на 4-й хромосоме с размерно-весовыми показателями у самок золотой форели

G70824841T Позиция	Генотип GG (n=8)	Генотип GT (n=8)
Масса рыбы, г	3350,63±203,89	3534,44±108,20
Длина тела по Смиту, см	55,18±1,09	58,63±1,28
Длина тела чешуйчатого покрова, см	50,96±1,02	53,58±0,90
Длина головы, см	10,55±0,21 ^a	11,13±0,17 ^B
Высота тела, см	16,64±0,32	17,39±0,13
Толщина тела, см	7,36±0,21	7,61±0,13
Масса икры, г	344,75±19,43	366,67±13,51
Количество икринок в 5 граммах, шт	90,00±3,17	85,22±2,30
Масса 1 икринки, мг	57,50±2,08	59,11±1,58

В позиции G70824841T гена BMP-2_1IN выявлена статистически значимая ассоциация между показателем «длина головы» и генотипами GG/GT, P < 0.05 у самок золотой форели.

Табл. 5. Ассоциации генотипов в гене *BMP-2_*1IN (позиция G70824841T) на 4-й хромосоме с размерно-весовыми показателями у самцов золотой форели

G70824841T Позиция	Генотип GT (n=13)	Генотип ТТ (n=3)
Масса рыбы, г	663,85±40,81	695,00±79,11
Длина тела по Смиту, см	34,57±0,73	36,57±1,67
объем эякулята, мл	5,07±0,38 ^a	3,43±0,28 ^B
Подвижность, сек/%	25,85±0,55	25,67±1,33

Примечание: GT/TT (a-в, P < 0,01)

В позиции G70824841T гена *BMP-2*_1IN выявлена значимая ассоциация между показателем «объем эякулята» и генотипами GT/TT, P < 0,01.

Табл. 6. Ассоциации генотипов в экзоне гена 3*BMP-2*_2 на 24-й хромосоме с размерно-весовыми показателями у самцов золотой форели

Размерно-весовые показатели	Генотип СС (n=2)	Генотип СG (n=9)	Генотип GG (n=5)
Масса рыбы, г	542,50±57,50	702,22±49,42 ^a	558,00±44,68 ^B
Длина тела по Смиту, см	33,05±0,95	36,12±0,81	33,58±1,26
V эякулята, мл	4,70±1,90	4,52±0,45	5,22±0,55
Подвижность, сек/%	24,50±1,50	26,00±0,69	26,00±0,89

Примечание: CG/GG (а-в, P < 0,05).

Выявлена статистически значимая ассоциация между показателями «масса рыбы» и генотипом CG/GG, P < 0,05.

Заключение

Таким образом, от 8 пар производителей было получено потомство. От каждой пары брали по 50 потомков, у которых ежемесячно в возрасте от 30 до 180 дней снимали размерно-весовые показатели. Выявлены замены нуклеотидов (полиморфизмы) в отдельных участках гена ВМР-2 на хромосомах 4 и 24, ассоциированные с рядом продуктивных признаков у радужной форели, что может быть использовано в селекционной работе, в частности, при подборе пар производителей.

СПАСИБО ЗА ВНИМАНИЕ