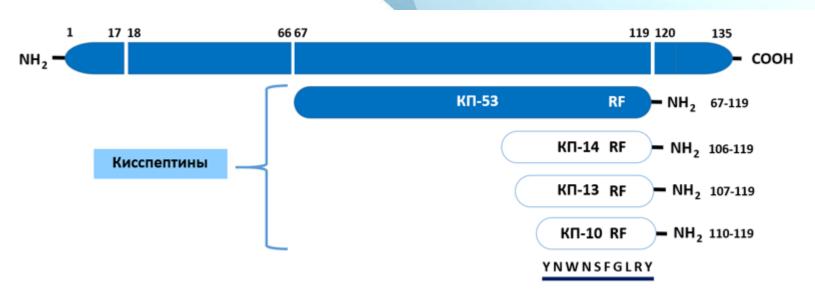


Концентрации кисспептина, прогестерона и тестостерона в крови у бычков и телочек голштинской породы в ходе полового созревания

Ширяев Г. В. — с.н.с., ВНИИГРЖ, кандидат с.-х. наук.

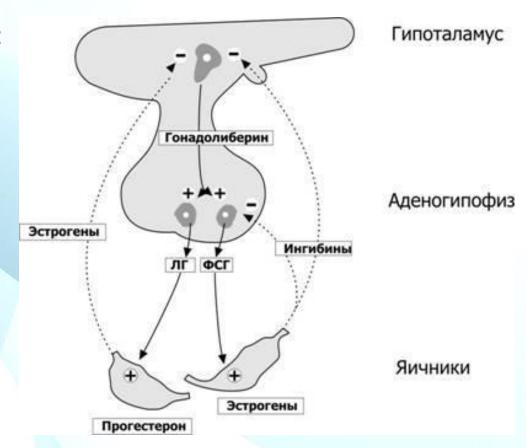
Гормон кисспептин, кодируемый геном *KISS-1*, был открыт в 1996 году. Первоначально кисспептин был определен как супрессор метастазирования опухолей, поскольку его экспрессия оказалась минимальной или даже отсутствовала при метастазирующих злокачественных заболеваниях, а при неметастазирующих она остается неизменной. Предполагают, что это свойство кисспептина связано с индукцией апоптоза в опухолевых клетках.

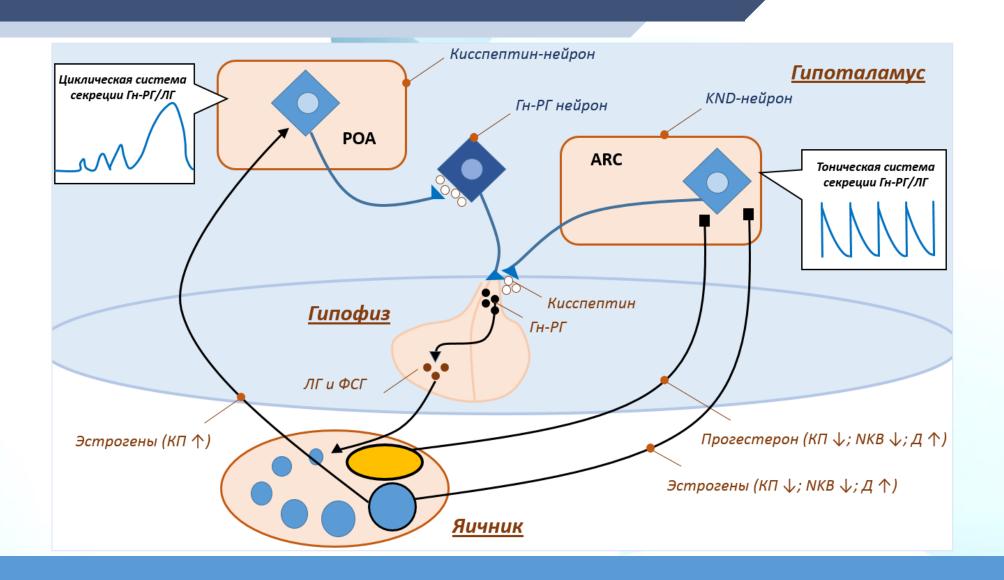
Способность кисспептина потенцировать секрецию ГнРГ была впервые описана в 2003 г. В этом же году было обнаружено, что KISS1R отсутствует или инактивирован вследствие мутации у пациентов страдающих вторичным (гонадотропным гипогонадизмом


Таблица 1. Сравнение аминокислотной последовательности кисспептина среди различных видов.

		* *****	
Мышь	1	-SSPCPPVEGPAGRQRP-LCASRSRLIPAPRGAVLVQR	EKDLST YNWNSFGLRY 5
Крыса	1	-TSPCPPVENPTGHQRP-PCATRSRLIPAPRGSVLVQR	EKDMSA YNWNSFGLRY 5
Коза	1	GAALCPS-ESSAGPRQPGPCAPRSRLIPAPRGAVLVQR	EKDVSA YNWNSFGLRY 5
Овца	1	GAALCPS-ESSAGPRQPGPCAPRSRLIPAPRGAALVQR	EKDVSA YNWNSFGLRY 5
Крупный рогатый скот	1	GAALCPP-ESSAGPQRLGPCAPRSRLIPSPRGAVLVQR	EKDVSA YNWNSFGLRY 5
Свинья	1	GTSSCQPPESSSGPQRPGLCTPRSRLIPAPRGAVLVQR	EKDLSA YNWNSFGLRY 5
Шимпанзе	1	GTSLSPPPESSGSPQQPGLSAPNSRQIPAPQGAVLVQR	EKDLPN YNWNSFGLRF 5
Человек	1	GTSLSPPPESSGSPQQPGLSAPHSRQIPAPQGAVLVQR	EKDLPN YNWNSFGLRF 5

Числа в последнем столбце указывают на количество аминокислотных остатков. Идентичные аминокислотные остатки отмечены *. Выделенная часть таблицы показывает область КП-10, которая аналогична у многих видов млекопитающих.


У крупного рогатого скота ген KISS1, располагаясь на 16-ой хромосоме, кодирует прогормон в виде гидрофобного белка, состоящего из 135 аминокислотных остатков (а.о.). Далее этот прогормон гидролизуется в белок кисспептин 53 (КП-53). Имеются результаты большого количества исследований, указывающих на возможный дальнейший гидролиз КП-53 на короткие пептиды (КП-14, КП-13 и КП-10) по аналогии с другими млекопитающими.



Установлено, что кисспептин синтезируется во многих органах: в гипоталамусе, плаценте, гонадах, почках, поджелудочной железе, печени, кишечнике, аорте, коронарных артериях и пупочной вене. Экспрессия кисспептина и его рецептора в гипоталамусе происходит в основном в нейронах аркуатного ядра и антеровентрального перивентрикулярного ядра преоптической области.

Обе популяции KISS1-нейронов по-разному участвуют в передаче эффекта половых гормонов ГнРГнейронам. Представляется, что между нейронами преоптического ядра и эстрогенами возникает положительная обратная связь, ответственная за формирование пика ЛГ, в то время как в аркуатном ядре существуют и положительная, и отрицательная обратные связи.

Материалы и методы

Исследования проведены в племенном хозяйстве Ленинградской области. В опыте были 10 бычков и 10 телочек голштинской породы без клинических признаков заболеваний после отела. Условия содержания и кормления соответствовали зооветеринарным требованиям и были одинаковыми для всех животных. Кровь брали ежемесячно на протяжении 10 месяцев из яремной вены с помощью вакуумных пробирок через 4 часа после утреннего кормления. Образцы крови немедленно помещали на лед и центрифугировали 10 минут при 3000 об/мин в течение 1-2 часов после сбора. Сыворотку крови собирали в криопробирки емкостью 1,8 мл и хранили в морозильной камере при -75°С для дальнейшего анализа.

Концентрацию гормонов в сыворотке крови определяли иммуноферментным анализом. Концентрацию кисспептина оценивали с использованием набора Cloud-Clone Corp. (КНР) для коров и телят. Концентрации прогестерона и тестостерона оценивали с помощью наборов «Алкор-Био» (Россия) согласно инструкции производителя.

Результаты

Возраст,	Кисспептин, пг/мл		
мес	Бычки	Телки	
1	90,96±7,72	90,20±2,01	
2	102,72±0,71	92,13±15,86	
3	125,36±5,67	136,52±30,34	
4	137,60±45,25	112,24±15,45	
5	109,77±6,87	142,43±11,79	
6	103,45±3,98 ^a	146,52±10,47 ^a	
7	105,23±6,41	149,89±30,68	
8	132,41±34,18	181,22±15,77	
9	127,71±12,54 ^a	172,91±3,72a	
10	107,22±20,84 ^a	206,28±4,50 ^a	

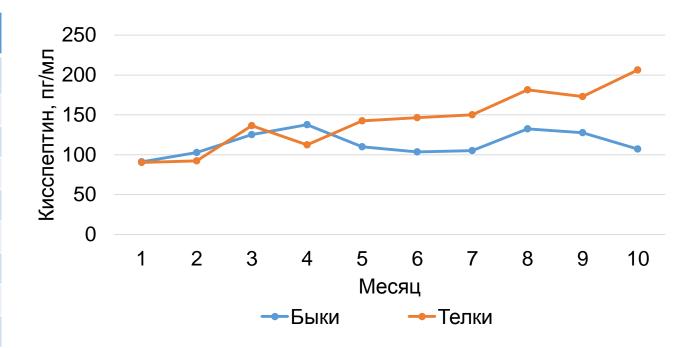


Рис. 1. Динамика кисспептина (пг/мл) по месяцам с момента рождения у бычков и телок

^a P>0,05

Результаты

Возраст, мес	Прогестерон, нмоль/л		
	Быки	Телки	
1	1,48±0,61	1,24±0,78	
2	1,40±1,2	1,44±0,83	
3	1,55±0,98	1,38±0,69	
4	2,13±1,14	1,36±0,98	
5	$0,39\pm0,32$	4,44±2,53	
6	0,35±0,33	3,04±2,41	
7	1,70±0,43	6,35±0,92	
8	0,89±0,45a	3,90±1,85a	
9	1,76±0,95	3,57±1,80	
10	2,28±1,53	9,29±3,41	

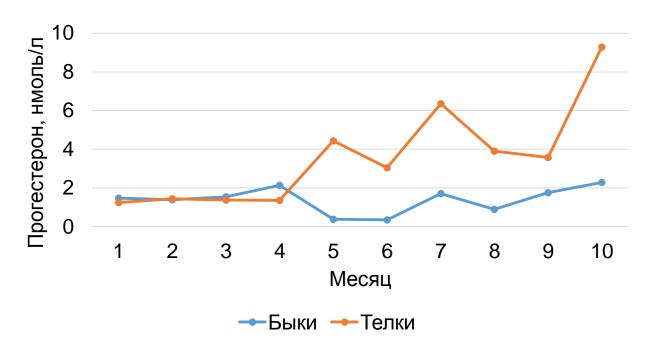


Рис. 2. Динамика прогестерона (нмоль/л) по месяцам с момента рождения у бычков и телок

^a P>0,05

Результаты

Возраст,	Тестостерон, нмоль/л		
мес	Быки	Телки	
1	$3,32\pm0,90$	2,16±0,23	
2	4,54±1,76a	1,70±0,38a	
3	6,74±1,96a	1,31±0,04 ^a	
4	21,03±8,23a	2,20±0,37a	
5	23,68±5,29a	1,23±0,08a	
6	20,59±7,29a	1,81±0,36a	
7	20,76±14,56	1,80±0,39	
8	34,88±9,90a	2,31±0,50 ^a	
9	24,88±10,90a	1,48±0,02a	
10	52,50±7,82a	1,96±0,55a	

Рис. 3. Динамика тестостерона (нмоль/л) по месяцам с момента рождения у бычков и телок

a P>0,05

Результаты / Выводы

Корреляционный анализ показал достоверную связь концентраций кисспептина и прогестерона у телок — коэффициент корреляции 0,797 (P>0,01). В нашей работе выявлена достоверная корреляционная связь концентрации кисспептина и тестостерона у бычков, равная 0,636 (P>0,05), что возможно показывает его значимость для репродукции самцов.

Выводы. На разных этапах полового созревания телят в препубертатный и пубертатный периоды происходит генетически запрограммированное нарушение стабильности внутренней среды. Это выражается в существенном сдвиге гормонального статуса животных. В наших исследованиях подобный сдвиг в отношении концентраций кисспептина и прогестерона отмечен с 5 месяца после рождения телят. Причем уровень этих гормонов, начиная с этого возраста, был выше у телок в сравнении с бычками. Концентрация тестостерона с 3-го месяца стала повышаться у бычков. У телок данный показатель оставался практически на одном уровне, вплоть до 10-го месяца.

gs-2027@yandex.ru

Спасибо за внимание!