XII ЛУЖСКИЕ НАУЧНЫЕ ЧТЕНИЯ «СОВРЕМЕННОЕ НАУЧНОЕ ЗНАНИЕ: ТЕОРИЯ И ПРАКТИКА», 22 мая 2024, г. Луга, Ленинградская область, РФ

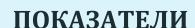
Геномные ассоциации царскосельской породы с показателями интерьера и экстерьера

Аспирант: Азовцева Анастасия Ивановна

Научный руководитель: Дементьева Наталия Викторовна, зав.лаб. молекулярной генетики ВНИИГРЖ, в.н.с., к.б.н.

Исследование проведено в рамках выполнения научных исследований Министерства науки и высшего образования РФ по теме № 124020200114-7 (FGGN-2024-0015).

проанализировать ассоциации генома с


хозяйственно-полезными признаками.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

ИНТЕРЬЕР

- Живая масса
- Масса сердца
- Масса печени
- Масса селезенки
- Масса мышцы голени
- Масса мышц груди
- Масса железистого желудка
- Масса мышечного желудка.

ЭКСТЕРЬЕР

- Живая масса
- Косая длина туловища
- Длина корпуса с шеей
- Обхват груди и плюсны
- Длина плюсны, голени, бедра
- Глубина груди
- Ширина таза
- Ширина в ключицах
- Угол груди.

ЦАРСКОСЕЛЬСКАЯ ПОРОДА

96 голов, ЦКП «Генетическая коллекция редких и исчезающих пород кур», ВНИИГРЖ.

Порода создана путем скрещивания Полтавских глинистых кур и Нью-гемпширов с палево-полосатыми 4-х линейными петухами кросса «Бройлер-6».

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

О1 Сбор данных

Взятие промеров для экстерьера – в 42 недели; забой – в 58 недель.

О4Контроль качества генотипирования

ΠΟ Genome studio.

02

Выделение ДНК

Отбор проб крови и фенол-хлороформная экстракция ДНК.

O5 GWAS-анализ

ПО ЕММАХ, применение поправки Бонферрони.

ОЗПолногеномное генотипирование

Illumina Chicken 60K SNP iSelect BeadChip.

Об Аннотирование результатов

Геномный браузер ENSEMBL, вид Red Jungle Fowl, сборка генома GRCg6a

Геномные ассоциации с экстерьером

Признак	SNP	Хромосома: Позиция	P-value	Локализация	Ген или ID гена
Живая масса	rs14415184	3: 110446054	2,25E-05	Intron variant	ENSGALG00000051510
Обхват груди	rs312492432	18: 3218685	1,73E-05	Intron variant	ENSGALG0000001433
Длина голени	rs14707919	27: 3286027	1,56E-05	Upstream gene variant	IGF2BP1 GIP
	rs13823757	1: 3864234	1,62E-05	Intron variant	ENSGALG00000055394 ENSGALG00000059060 ENSGALG00000065380
Длина плюсны	rs16204837	26: 5071683	4,01E-06	Intron variant	TAF8
	rs315156385	9: 16574949	1,36E-05	Intron variant	DCUN1D1
Глубина груди	rs314564021	18: 8433791	3.22E-05	Intron variant	ENSGALG00000065510
Угол груди	rs316245165	1: 177061343	2,27E-05	Intron variant	ENSGALG00000055349

Аннотированные гены

Длина голени

IGF2BP1 – член семейства белков, связывающих инсулиноподобный фактор роста.

GIP – кодирует гормон инкретин, необходимый для поддержания гомеостаза глюкозы.

Длина плюсны

TAF8 - кодирует фактор, связанный с TATA-box белком. связывающим Неотъемлемая общего часть комплекса транскрипционных (TFIID). факторов DCUN1D1 обеспечивает связывающую белков активность семейства куллинов. Участвует процессах неддилирования И убиктинирования белков.

Геномные ассоциации с интерьером

W.	0)"	
BH	иигрж	
	₩ BH	ВНИИГРЖ

Признак	SNP	Хромосома: Позиция	P-value	Локализация	Ген или ID гена
Живая масса	rs15204278	23: 4587518	6,20E-06	Intron variant	CLSPN
Масса сердца	rs14690448	22: 2002179	2,33E-05	Intron variant	UNC5D
Масса печени	rs14023503	11: 9628291	7,53E-06	Intergenic variant	NUDT19
Масса мышцы голени	rs15773720	15: 6536930	1,91E-05	Intron variant	ISCU
Масса мышц груди	rs15236831	1: 36634355	8,58E-06	Intron variant	TPH2

Аннотированные гены

Масса мышц груди

Живая масса

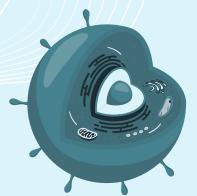
CLSPN - адаптер контрольной точки, фактор репликации ДНК. Играет важную роль в клеточном цикле, повреждении и восстановлении ДНК.

Масса сердца

UNC5D - рецептор нетрина, способствует выживанию нейрональных клеток.
Задействован в апоптозе в ответ на повреждение ДНК.

ТРН2 - кодирует триптофангидрокси лазу. Закодированный белок катализирует первый и лимитирующий этап биосинтеза

серотонина.


Масса мышцы голени

ISCU – кодирует компонент каркаса железо-серного кластера (Fe-S), который важен для функционирования ферментов, регулирующих метаболизм, гомеостаз железа и реакцию на окислительный стресс.

Масса печени

NUDT19 – гидролаза, активирует связывание ионов магния.

Благодарю за внимание!